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SUMMARY

In this paper, maximum likelihood estimation for distributed parameter models of large
fexible structures has been formulated. Distributed parameter models involve far fewer unknown
parameters than independent modal characteristics or finite element models. The closed-
torm solutions for the partial differential equations with corresponding boundary conditions
have been derived. The closed-form expressions of the sensitivity functions lead to highly
ctficient algorithms for analyzing ground or on-orbit test results. For illustration of this
approach, experimental data of the NASA Mini-MAST trust have been used. The estimations
of modal properties involve its lateral bending modes and torsional modes. The results show
that distributed parameter models are promising in the parameter estimation of large texible

structures.
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INTRODUCTION

Large spacecraft structures, such as, Solar Array Flight Experiment, Mini-MAST (CSI)
employ large complex trusses in their constructions. Because of their large size and because of
gravitational loads, it is not possible to determine with suitable accuracy their structural dynamic
characteristics from ground-based testing of a full-scale prototype. Analysis of on-orbit response
data will be necessary. In recent years, numerous variations of system identification methods
have been developed. Unfortunately, current approaches to parameter estimation cannot handle
the complex models foreseen to be necessary. As the number of modes increases, the accuracy

will be decreased and the complexity significantly increases.

Two distinct approaches to the solution of large space structural parameter identification
problems have emerged. One is the lumped parameter approach, the other is the distributed
parameter approach [1-5]. The obvious fact is that by far the most effort put into the study of
the identification problem has been based on the lumped parameter model. With the increase
of the number of modes, the number of parameters increases rapidly for the lumped parameter
approach. However, for the distributed parameter approach, the total number of parameters
needed to be identified almost keeps the same. |

Distributed parameter model is based on the partial differential equation (PDE). In this
approach, instead of identifying the modal frequency, damping and mode shape deflection of
each mode, only the coefficients of the partial differential equation and initial conditions need

to be estimated.

This paper intends to create a very simple distributed parameter model, combining the use of
maximum likelihood estimation technique (MLE), to identify the modal characteristics of NASA
Mini-MAST truss which is treated as a cantilevered beam with two concentrated masses. Wave
equation and Bernoulli-Euler beam equation are introduced to describe the torsional and bending
behavior of the Mini-MAST truss. Proportional damping will be taken into account simply by

adding a damping term in the PDE’s, which is proportional to velocity [6].
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4

A series of closed-form solutions of the PDE’s will be used to match the measurements of the
vibrations. Based on the optimal fitness between the measurement response and the theoretical
response in the sense of maximization of likelihood function, the coefficients in the PDE’s and the
parameters dependent on the initial conditions are estimated. The closed-form expressions of the
sensitivity functions are derived, which carry out the innovations of the unknown parameters in
the iteration process. The comparison of the results with other methods shows that the proposed

approach is promising in the parameter estimation of large flexible structures.

NASA MINI-MAST (CSI) TESTBED

NASA Mini-MAST (see Fig. 1) is a generic space truss built primarily for research in the
areas of structural analysis and vibrational control [7]. Mini-MAST is deployed vertically inside
a high-bay tower, cantilevered from its base on a rigid foundation. The total height of the truss
is 20.16 meters, containing 18 bays (1.12 meters each) in a single-laced configuration with every
other bay repeating. The deployable/retractable truss beam has a three-longeron construction
forming a triangular cross-section with points inscribed by a circle of diameter 1.4 meters. The
beam has three member types: longerons, battens, and diagonals. Longerons are parallel to the
beam axis and provide beam stiffness and strength in bending. Battens are in the beam face
planes and provide beam stability. Finally, diagonals, also in the beam face planes, provide beam
stiffness and strength in torsion and shear. Two instrumentation platforms, holding actuators and
sensors for CSI control experiment, have been installed at Bay 10 and Bay 18 (beam tip). These
additional components have a significant effect on the strucwral dynamic characteristics.

In this paper, the real Mini-MAST truss is treated as a cantilevered beam with two
concentrated masses at Bay 10 and Bay 18 respectively (Fig. 2). The continuum model is
equivalent to the real truss in the sense that both have the same dynamic properties, say, natural
frequency, damping ratio and mode shape. To keep the equivalency, the structural parameters
of the equivalent must be set up properly. All these parameters will be divided into two types.

Some physical quantities of the real structure, such as length, weight, etc., are called unadjustable
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5
parameters which are assumed to be known a priori. Another type of parameters, such as the
composed parameters appearing in the PDE’s, will be adjusted in the estimation process. This
type of parameters is called adjustable parameters, which will be the elements of the unknown
parameter vector in the maximum likelihood estimator. The parameters of the equivalent of the
Mini-MAST truss is listed in Table 1.

The control inputs of the system are three orthogonal torque wheel actuators located at the
top platform (Bay 18). Output pulse responses were obtained by applying single pulse signals
at each input channel. Twenty seconds of output pulse response were collected for each input
channel. A sampling frequency of 50 Hz is used. Two sets of data [8] are selected for our
analysis here. The acquisitions of the selected data are recounted as follows. The first set
of data was obtained from the measurement of the rotation rate about the x-axis, which was
measured by one rate gyro mounted at the tip platform. The second one was obtained from
the measurement of y-direction displacement, which was measured by one displacement sensor
installed at Bay 18, mounted parallel to the flat face on the comner joints of the structure and
positioned to measure deflections normal to the face. The locations of the actuators and sensors

concerned are shown in Fig. 3.

MODELLING

In this paper, the analysis of modal characteristics of NASA Mini-MAST truss involves
torsional and bending motions. The damped torsional vibration is described by the wave

equation
%6 00 06
Ji=— t+tc—=—hk7=5 =0 1
o T Vou? M
where 6(x,t) angle of twist, J, = plp moment of inertia of the beam, k = Gl torsional rigidity, and
C damping constant of proportionality. Two parameters a and b, which relate the coefficients

of the PDE, are defined by

(2)

(&
2b=—
¥ Jb

S
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6
The lateral bending vibration is described by the Bernoulli-Euler beam equation with proportional
damping term

&y 0y oty
Tn*a?—f-Cgt'*Fkaj—O (3)

where y (x,¢) lateral displacement, m = pA mass per length of the beam, and & = EI lateral

bending rigidity. Two parameters a and b are also defined by

LA )

m m

The solutions of Egs. (1) and (3) can be written in a generic form (see Appendix)

y(z,t) = Z Y () e Gomt (A; coswy;t + B, sinwy;t) &)

]
where, y(z,t) represents either angle of twist (8) or lateral displacement y, A; and B; the
coefficients dependent on the initial conditions, wa, and wy, = wy,,4/1 — {? the natural frequency
and damped natural frequency, respectively, and §; is the damping ratio. All these modal

properties are related to the parameters a and b by

wy, = uk?, wy, = \/ (uk;’)rz —-b, &= a—i)c‘vl (6)

where, g represents the order of power, with ¢ = 1 for torsion and ¢ = 2 for bending. From Eq.

(6), the solution Eq. (5) can be expressed in terms of the parameters a and b,

y (e t) = Z Y () e [A,'cost\/m + Bisiut\/(—a_kf’)g——b‘lJ )]

Yi(«) in the solutions (5) or (7) are the eigenfunctions given as follows. For torsional

equation:
[T—f-ﬂ“;‘if + 1] sin k;z 0<z <z
Vi) =¢ " @
‘?;—’(’lk-;)i + sinkyx T <z <l
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where,
sin kyl + ~—J’tk,»l cos k;l

kl) =
g cos kil — Bkl sin kil

For Bernoulli-Euler equation

(ri(shk;z — sin kjz) + (chhkjz — cos k;z)
0<z <0
Yy () = 4 e[l (k) sin ke 4+ a(kid) cos ki -+ shkie] + )
B s (Rl sin ko + b (Ril)eos kia + chkia]
\ zp0 <z <

where,
Ry (kil) = g1 (ki) 4277 kil cos bl shhsly by (kil) = ga(kil) — 2%k kil sin kil chkil

hs (kil) = gg(k,'l)J,—Q%tk,l cos kil ehkl;  hy (kl) =g4 (kil) = 2{%1;.’1 sin kil shk;l
and
g1 (k1) = cos kil chk;l4 siu kil shkd, g2 (kil) = cos kil chk;l — sin kil shk;l

gy (M) = cos kgl shikpsinkehkd, ga (kid) — cos k0 shkd - sin ko ochkd
and «j, 4 and r are the modal participant coefficients.

Finally, the most important quantities are the eigenvalues K;’s of the system. They are the
roots of the corresponding characteristic equations given as follows,

For torsional equation:

J J
D012k + 2kl g (k) sin? ke = 1 (10)
2], T

For Bernoulli-Euler equation:

sSux CHX -SHX -CHX
hy SNX+hyCSX hySNX+hCSX SNX Ccs5X
DET =0
W CSX—hySNX$CUX hyCSN —hySNX$SHX CSX-CUX ~SNX-SHX
2CHX X —u:ux+%nm(>wx—su,w) ~25HX +-‘wnuu:sx4:u)c)
b 3

(1n
where,
SNX =sinkz g, CSX = cos kay, SHX = sh kzyg, and CHX = ch kzxyp
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Maximum Likelihood Estimator

Assume that the outcome Y of an experiment depends on an unknown parameter vector 6.
We want to estimate the best value of 6 according to the observation Y. One of the advanced
technique is based on the Maximum Likelihood Estimate (MLE) principle. The essence of
the MLE method is to maximize the conditional probability density function, i.e., so-called
likelihood function, P (Y|9).

Suppose we have the measurement response sequences y (1), y(2),...,y (m). The matrix
Y. consisting of all measured ouwtputs is introduced, Y, = [y(1),y(2),...,y(m)]. 1If the
probability distribution of Y, has a density P [Y,,|6], it then follows from the definition of

conditional probability that

P[Yulf]l = Ply(1),y(2),y(m) 18] = [[ Py (:)|Vi-1, 6] (12)
i=1

If the assumption of Gaussian distribution is taken, the likelihood function has the form of

Hi

- I N o
L(g) = I [)m|9] = Emc)\l){—é‘{y(lll — 1,9) -— y(llt - 1,9)]
Ry (ili - 1,6) — g (ili - 1,0)1} (13)

where y, (z]¢ — 1, 8) is the norminal response calculated by using 8,. If the constants are ignored,

we have the log-likelihood function

J(8) = —1u L(6)

= 5 3 {ly @l 1,6) g Gl ~ 1,0 Ry (li - 1,0) ~ 5 (ili — 1,6)] + 1n R}
1=1
(14)

Linearizing y (z|z — 1,8) with respect to the unknown parameter vector 8, we have

g (efe = 1,8) = g, (it = 1,0) + (Vgyi) (8 — 6,) (15)
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9
where Vgy; gradient of y with respect to g, and 6, is norminal 8 vector. Substituting Eq. (15)

into Eq. (14) for J(6) and setting 8J1,_; = 0, we may obtain.

m -1 m
G=06,+ | (Vo) B! (vayi)} [Z(vay;)’" R (i - zm] (16)
=1

=1

In this paper, the unknown parameter vector will be
T
g = [a, b, A], A‘z, veey A,,, B‘, Bz, veuy B“]

The relationship between the modal properties and the unknowns is given in Eq. (6). Thus
we can obtain the modal properties through the solution of the PDE as long as these unknown
parameters are determined. The gradients of y (z,t) with respect 10 the unknowns in Eq. (16)

can be derived from Eq. (7) simply by taking derivatives.

0 ZY cye Y k‘ ut [ A;sinty/ (ak{) 2 _ 1 + Bjcosty/(akf) —b]
a /
(ukq)

(7

%% (x,t) = Z}', (.u)tc—“{—A,cost\/ (ak?)2 — b2 — B;sinty/ (uk?)?' — b
R ———— b [4 amt\/(akq b2 — Bjcosty/( akq) - bo]} (18)

(ak?) — b?
04 (J, t)y =Y;(x)e b'cost\/(ak?)'2 — b’ (19)

8!] —bt - q 2 9
v V. N 2 . — = 2()
B, (¢,t) =Yi(z)e st (akt) b (20)
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10

Analysis of Modal Properties

As mentioned before, the procedure by using distributed parameter approach to analyze the
modal properties is quite different from that of the lumped parameter approach. First, based on
the unadjustable structural parameters, the eigenvalues k; and the eigenfunctions Y; (z) (mode
shapes) of the system can be determined through the solutions of the corresponding characteristic
equations before the estimation iteration starts. Second, only the coefficients of the PDE’s and
the parameters relevant to the initial conditions need to be estimated rather than the modal
frequency, damping and mode shape deflection of each mode, These two characteristics greatly
decrease the number of unknown parameters and speed up the iterative process.

Solution of the PDE is in the form of infinite series mathematically, so no modal truncation
problem is involved theoretically. However the contributions to the response are always so small
for the higher frequency modes that only the first several modes (five in this paper) are used
in the analysis,

It 1s noted that the modal coupling must be considered. Because of the eccentric properties of
both the tip-mass and the tip-actuating pulses, the lateral bending vibration will be excited while
torsional vibration exists and vice versa. However, the experimental data show that bending
modes are hardly recognized in the torsional measurement, and the first torsional mode appears
clearly in the bending measurement. So the first torsional mode is included in the analysis of
the bending vibration.

From the experiment data it is hard to get any a priori information about the initial conditions
of the response, that is, the initial values of 4, and B; for iteration. Fortunately the initial values
of A; and B, do not affect the convergency significantly, so they are chosen arbitrarily. However,
the initial values of parameters a and b are very important to the convergency. From the results
of finite element analysis, we can determine the initial values of equivalent stiffness first, then

proceed to reckon the initial values of the parameters a and b.
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11
Tterative accuracy is controlled by the innovation residual of the unknown parameter vector

8, which is defined by

1 ) 1/2
ey = {_ﬁz-i ; [9,, (2) - 0.1 (l)]z}

where, p the number of the unknowns, 8(z) the ith element of the unknown parameter vector
g, and n is the number of successive iteration. In the algorithm, ey < 1077 is referred to as
the criterion which controls the iteration.

Table 2 shows the comparison of the estimated frequencies obtained from Finite Element
Analysis (FEA), Eigensystem Realization Algorithm (ERA) [9] and Distributed Parameter Algo-
rithm (DPA). Most modes are comparable to each other. The fifth bending mode from DPA is
extremely higher than that of the other approaches. This is due to inadequacy of the Bernoulli-
Euler beam model used. Because the rotary inertia and shear deformation of the beam are
neglected, the Bernoulli-Euler beam mode! produces much higher frequencies in the high fre-
quency range. In order to improve the accuracy for high frequency, Timoshenko beam model
is proposed for further investigation.

Figure 4 shows that the reconstructed responses obtained from the estimated parameters and

the measured responses have a reasonably good fitness.

CONCLUDING REMARKS

This paper proposes a distributed parameter model for the analysis of the modal charac-
teristics of NASA Mini-MAST truss. Wave equation and Bernoulli-Euler equation have been
used to describe the torsional and bending vibrations respectively. Closed-form solutions of the
PDE’s are derived. By using the Maximum Likelihood Estimation method to provide the opti-
mal match between the experimental data and estimated responses, the coefficients in the PDE’s
and the parameters dependent on the initial conditions are estimated and the modal properties
can be further determined. The results are comparable to those from other approaches. The

estimates of bending modes in the higher frequency range is expected to be improved by using
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Timoshenko beam model. Because the number of unknown paramelters is greatly reduced in

the distributed parameter model and the maximum likelihood estimation is feasible based on the

derived closed form solutions of the PDE’s, the proposed approach is particularly attractive for

its less computational burden for the large flexible structures.

10.
11.

12.
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Table 1 Structural Parameters of Equivalent Continuum of NASA Mini-MAST Truss

A. Unadjustable Parameters
Length of the Beam L = 66.24 fi.
X-Coordinate of Bay 10 x;¢ = 36.80 ft.
Radius of Gyration of the Section r = 1.6237 fi.
Mass per Length pA = 0.1076 slug/fi.

Ratios of Weights:
Bay 10-body/Beam: ¥ = 0.4760
Tip-body/Beam: f—;ﬂt = 1.4547

Ratios of Moments of Inertia:
Bay 10-body/Beam: ﬂ:‘ = 0.6206
Tip-body/Beam: 4t = 0.6206

B. Adjustable Parameters: Initial Values for Iteration
Longitudinal Stiffness EA = 10,530,000 Lb
Bending Rigidity EI = 27,760,000 Lb.ft.2

Torsional Rigidity Glp = 1,970,000 Lb.f1.2
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Table 2 Comparison of Estimated Frequencies (Hz)

A. Bending Modes

15

No. FE.A. ER.A. D.P.A.
1 0.80 0.86 0.768
2 6.16 6.18 6.637
3 32.06 32.39 29.773
4 44.86 43.23 50.923
5 70.18 67.27 102.973

B. Torsional Modes

No. F.E.A. E.R.A. D.P.A.
1 4.37 4.19 4.527
2 21.57 22.89 21.671
3 39.01 38.06 42.521
4 54.27 51.55 56.509

5 72.87 67.27 70.559
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APPENDIX A

Solution to the Bernoulili-Euler Beam Equation

In using distributed parameter approach to identify the structural systems, one of the most

important procedures is to solve the partial differential equation.

Here, only solution to the Bernoulli-Euler beam equation will be provided. Solution to the

torsional vibration equation can be derived by following similar procedures.
The Bernoulli-Euler beam equation describing lateral bending is

oty 1 0%y

o taae =0 (A-D

where, a® = %. The general solution to Eq. (A.1) may be expressed as
y(a,t) = Z Y; (2)[Aicosw;t + B; sinw;t] (A.2)
where, Y; () are the eigenfunctions which are of the form
¥, (2) = Cy sin ki + Cy coskiz + Cysh ke + Cach kiz ' (A3)

Now we derive the specific form of the solution for the equivalent Mini-MAST truss —

cantilevered beam with two lumped masses. The procedure consists of three steps as follows.
Step 1 For the right segment, i.e. © = Zio ~ L
The PDE for the lateral vibration of the right segment is

Dyp | 1 Pyn _

414 A4
Ouxt a? 0t? (A4
The boundary conditions for the free end (z = {) are:

Py (1 4) =0

7zt (hY) (A.5)

EI%4 (1,t) = W a8 (1,¢)

After the separation of variables
yr(z,t) = Yr(2)T ()
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we have a Y, — ODE,
Yp" (2) = kYR (z) =0

with B.C.’s
YA =0
{ Y/ (1) = —jpikdY (1)
The general solution o Eq. (A.6) and the corresponding derivatives are as follows,
[ Yi(z) = Cysinka + Cy cos ka + Cishkz + Cychkx
) Yp(2) = K(Cycoskz — Cysinka + Cychkz + Cyshkz)
Yy (&) = K*(~Cysinke — Cycos ke + Cyshka + Cychka)

YR () = K3 (-C) coska + Cy sinkz + Cychke + Cyshkz)

By using the B.C., we have
C) = ¢, (yl (K1) + 24kl cos udhu) e (y;; (k1) + 2%:ucosuchk1)
Cy = C, (g‘1 (1) - 28 ki sin klshkl) +Cy (gz (k1) = 2Ht ki sin klchhl)

where,
g1 (k) = cos klchkl + sin klshkl

g2 (k1) = cos klchkl — sin klshkl
g3 (A1) = cos klshkl + sin klchkl
g4 (k1) = cos kishkl — sin kichkl

(A.6)

(A7)

(A.8)

(A9)

(A.10)

Thus, Y (2) and its derivatives can be expressed in terms of the coefficients Cs3 and Cy4.

[ Yie(a) = Cy[hy (k) sinka + hy (k1) cos kz + shkz]
+Ci [hy (kD) sin ka + hy (ki) cos ke + chia]
Y (2) = C3K [hy (k) cos kx — hy (kl)sin ke + chka]
) 1O R [hy (k) cos ka — hy (k) sin ke + shkz]
Vil () = C3 R [~ hy (Kl)sin ks — hy (k1) cos ke + shka]
+CyK? [~ h3 (kl)sinkz — hy (k1) cos kx + chkz]
W(x) = CyK3 [—hy (M) coskz + hy (kl) sin ke + chkz]

+Cy K3 [—hy (kl) cos kx + hy (kD) sinkz + shkzx]

Q00 A2

(A.11)



where,

(1) (k1) = gy (k1) + 24kl cos klshk
hy (k1) = g2 (k1) — 2kl sin klchkl

(A.12)
hy (K1) = g3 (k1) + 2kl cos klchkl
| ha (K1) = g4 (k1) — 23k sin klshkl
Step 2 For the left segment, ie. = = 0~ 9.
The PDE for the lateral vibration of the left segment is
Oy, 1y,
— =0 A.13
ort  a? Ot? ( )
The boundary conditions for the fixed end (z = 0) are:
y (0,t) =0
) (A.14)
S (0,t) =0
After the separation of variables
yi (x,t) =Y (2)T(t)
we have a Y, — ODE
},rllll (.L) _ I\"l},rL (:1:) — 0 (A-]S)
with B.C.’s
Y, (0)=0
(A.16)
1(0) =0
The general solution to Eq. (A.15) has the form of
Y, (2) = dy sinka + dycoska + dyshkx + dychke (A.17)

By using the B.C., we can express Y7, («) and its derivatives in terms of the coefficients d3

and d4
(Y} (2) = ds (shka — sinka) + dy (chke — cos kz)
I (2) = dsK (chkz — coskz) + da K (shkz + sin kzx)

4 (A.18)
Y[ (x) = ds K2 (shkax + sinkz) + dy K% (chka 4 cos k)

L Y/ (z) = dy K3 (chka + cos hz) + dy V3 (shkz — sin k)
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Step 3 The compatible conditions at the common point, z = z,,, between the two segments.

I The lateral displacement must be the same, ie., ¥, (z10) = Yy (210). Thus,

dy (shkzyo — sinkayg) + dy (chkayg — cos kayg)
= Cy[hy (k) sinkz1g + hq (k1) cos kz 1o + shkz o)

+Cy [hs (k) sin kayg + ho (K1) cos ko + chkzyy] (A.19)

Il The slope of the center line of the beam must be the same, i.e, Y (z10) = Y}, (210). Thus

dy (chkzyy — cos kayy) + dy (shkzyy + sinkz )
= Cy[hy (kl)coskzyg — by (A sinkzyy + chkzg)

+Cy [hy (M) coskaxyg — Ry (k) sin kayg + shkzyg) (A.20)

III.  The bending moment must be the same, i.e, Y/ (210) = Y} (z1y). Thus,

dy(shkay + sinkayg) + dy (chkayg + cos kuyg)
= Cy [~k (k) sinkaxyg — by (M) cos kzyp + shhkz )

+Cy {*/t;; (Kl) sinkzig — ha (l\,l) coskryg + Chkl‘w] (A.2])

IV. Because of the inertia of the lumped weight Wy, the shear has a jump at z = ay, ie.,

W, .
EIN{" (210) T = EIV} (210) T + —gﬂn (z30) T

which yields

Wi

Y/ (w10) = Yi' (210) - W,

1L4YL (IL'“))
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Thus

dy (chkzyo + coskzyg) + dy (shkzio — sinkzio)
= Cy[—hy (k) cos kayy + hg (k) sinkzio + chkz o)
+Cy [~hs (k) cos kzjo + ho (El)sinkxyo + shkzyo)

_I—:/I—/lﬁkl [ds (shkzig — sin kzy0) + d4 (chkzyg — cos kzy0)] (A.22)
Vb

Then a set of equations forms from Eq. (A. 19) 10 Eq. (A22)

Cyshkaio + Cochka g — dyshkayo — dychkzyp =0

C'y (hy sin kayy + hqcos kay) + Cy (hysinkzyg + ha cos kayg)
+dysin kg + dycoskzyy =0

C3 (hy cos kxyp — hysinkayg + chkayp) + Ca(hy cos ko

j —hysin kg + shkey) + ds (cos ko — chkayg) (A.23)
—dy (sinkayo + shkrye) =0

Cy (2chkeyy) + Ci (2shkaig) + ds {(—2chkm) + W0l (sin bz - .shk:vm)]

| [(—Qshkajm) + W8kl (cos k1o — chkxm)] =0

The condition for set (A.23) having non-trivial solution is that the determinant of the set

(A.23) equals to zero, that is

SHX CHX —SHX —CHX
hy SNX4hgUSX hySNX b C5X SNX 52N
DET =0
W CSX=hySNX+CHX h3CSX-hySNX4SHX CSX—~-CHX ~SNX-SHX
2CHX 251X —2C!l)\'-}—%ﬂkl(SNX—SHX) —25'ux+1é}ﬂu(csx—uu)()
b b

(A.24)
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Actually, Eq. (A.24) is the characteristic equation of the Bernoulli-Euler beam equation used
in this paper, from which the eigenvalues K; will be derived. Solving the characteristic equation
by using binary searching technique, we can obtain the eigenvalues K,

Iy = 0.0172, 0.0507, 0.1074, 0.1405, 0.1998,
0.2258, 0.2263, 0.2268, 0.2278, 0.2283, ...

After determining the eigenvalues K;’s we can solve the set (A.23) for the coefficients

Ci, Cy, d3 and dy. In fact, there are infinite number of solutions to the set (A.23) because

Cs, Cy, dsand dy are not totally independent. Assuming the solution to the set (A23)is

C3 = a;C;
Cq = p,C,
(A.25)
dy =
dy = ¢
then, from Egs. (A.11) and (A.18) we have the characteristic functions
(Y7, () = ri(shhke — sin kz) + (chkiz — coskjz)
0<z<ay
Yi(e) = ¢ Yo (@) = o [y (Mil) sin kg + g (ki) cos kil + shk,z] (A.26)
+8i [hy (ki) sin ki + by (k1) cos kil + chkiz]
\ e <a <
By superposition, then, the solution to the PDE should be
=Y Yi(z) T ()
= > Yi(w) [Aicoswit + By sinw,] (A.27)

where, w, = Kia.
When proportional damping is taken into account, the PDE describing damped lateral

vibration will be

Py dy oy
9 9y _ A28
a2 Ve thgp =0 (A.28)

1
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Here, two parameters a and b, which relate the coefficients of the PDE, are defined,

2 _ &k _ EI
{ ™ (A.29)
b

The substitution of y (x,t) = Y T () Y (x) into Eq. (A.28) yields

2
It
2!

o
©
P

Il

3o

3 (nﬂ"‘,y; + CTY; + kTgY{"’) =0

which bears further a set of independent equations under the generalized coordinates T; (t) by
the orthogonality property of the eigenfunctions,

11L,‘T,‘ + c,'T.‘ + kT, =0

(A.30)
where,
i
ny = / Yide generalized mass
Jo
{ I
ki =k / YY" de = mwz. / Yide generalized stiffuess
Ju
l _ °
¢ =c / Yide generalized damping
Eq. (A.30) can be expressed in modal form
Ti 4 26iwnTi + Wi Ti =0 (A31)

where,

Cy
2€iwu. =
m;
2 _ ke
“no =
i

Note that the damping ratio &;

is related to the eigenvalue K; through the parameter a and b.
In fact,

C

— A32
m ak'2 (A.32)
ORIGINAL PAGE IS
OF POOR QUALITY
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Eq. (A.31) turns out 10 be the equation of motion of a simple mass-spring-dashpot system.

Therefore, the ith-component of the response can be expressed as

T, (t) = ¢ Gwnt (Aicoswy t + By sinwy,t) (A.33)

where,

'——"‘"—; 2 b : gy 2 —:
ou = f1gf w1 () = ) e
]

Thus, T, (t) can be expressed in terms of parameters a and b,

T.(t) = ¢ (A, costy/ (uk?)2 - + B sinty/ (ak?)z — bz) (A.34)

By supcrposition, finally, the solution 10 the Eq. (A.28) should be

yle,t) = Y ()T (8)
=Y Vi) (A, cos \[(ak?)® =12 4 Bysint\/(ak?)? - b'3) (A.35)

where, 1} () are the eigenfunctions shown in Eq. (A.26).
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